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Void behaviour due to internal pressure induced 
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In this paper, the governing equations for the ductile growth of an isolated void in 
a nonhardening material, due to the internal pressure induced by temperature rise, are 
derived. It is found that the enlargement of the void volume is enhanced by the elevation of 
the temperature. In the case of the temperature rise caused by the plastic dissipation, the 
void behaviour considering temperature effect can be determined by combining with heat 
conduction equation. 

1. Introduction 
It has been frequently observed that the temperature 
at the tip of a propagating crack can give an apparent 
rise [see 1-3], which has a great influence on the 
fracture mechanisms [1 3]. The presence of high 
temperatures in the plastically deformed region at the 
tip of running cracks in polymethylmethacrylate 
(PMMA) and polystyrene (PS) has been confirmed 
experimentally by Fuller et al. [11, and it has been 
found that for such kind o f  materials, the monomer 
evolved could aid the formation of the voids which 
occupy 40% of the volume of the crazed material. An 
additional factor to be considered is that the material 
will contain some water (e.g. about 0.6% by mass in 
PMMA), which if vaporized would generate a void 
volume comparable to that formed by the monomer 
evolved. Generally within the voids the relationship 
between the internal pressure p and temperature 
T can be expressed as 

9(P, V, T) = 0 (1) 

where V is the void volume. For  the ideal gas the 
following relation holds 

pV 
- -  = const. (2) 
T 

It is necessary to examine the effect of temperature 
rise. McClintock [4] has presented a start on the void 
problem through his analysis of the expansion of 
a long circular cavity in a non-hardening material, 
pulled in the direction of its axis while subjected to 
transverse tensile stresses. Rice and Tracey [5] 
considered a spherical void in an infinite matrix, and 
found an exponential dependence of void growth rate 
on triaxial stress. Gurson [6] developed a method for 
calculating approximate yield loci via an upper bound 
approach for porous ductile materials. 

Our present work seeks to determine the relation 
between the void growth and temperature rise. We 

start by deriving a variational principle governing 
cavity expansion in an infinite rigid-plastic medium, 
which considers the tractions applied on the cavity 
induced by temperature rise. Then the governing 
equations for void growth via the temperature are 
derived, both for a long cylindrical void and 
a spherical void. Numerical results and discussions are 
presented. 

2. Variational principle for void growth 
in rigid-plastic materials and 
subjected to internal pressure 

Consider an infinite body of an incompressible 
rigid-plastic material, containing an internal void or 
voids with boundary surface Sv, on which tractions 
pdi = 1,2,3) are exerted. At the current instant the 
material is subjected to a uniform remote strain rate 
field ~ ~. This determines the remote deviatoric stress 
state s~ and, in addition, the current remote mean 
normal stress cy ~~ is specified so that 

~ = s~ + ~ S ~ j  (3) 

An extension for the functional to this problem can be 
followed from Budiansky and Vidensek's variational 
method [7]. Now define a functional Q(/0 of any 
velocity field 6 as 

Q(iJ) = fv  [sii(~) - s~7] ~jdV 

-- f (c~n~ + pl)fijdS (4) 
J s~ 

where V denotes the infinite volume exterior to the 
void(s) and, ni is a unit normal drawn into the material. 
The following convergence assumptions should be 
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Figure 1 A cylindrical void with internal pressure. 

satisfied 

and 

( .  
lira / .2  5))dS 0 - ~ u ) n ~ ( u j  - = ( 5 )  

Se --+ oo J s e  

fv  [su@~) - -  - ~ ) d V  (6) S~j ] (t~ 2 

is bounded. The subscripts 1 and 2 refer to any two of 
these fields and superscript A denotes the actual field. 
Considering any velocity field fij satisfying the 
incompressibility and agreeing with the remote strain 
rate, i.e. 

1 
~u = 5(~,,J + ~J,,) -~ ~ x,x, --. 0; ~ .  = 0 (7) 

And then it can be proved for any velocity field fij 

- Q~ = fv  [su(k) - s~]kudV > 0 (8) Q(fi) 

We will employ the minimum principle as a basis for 
the approximate solutions via the Rayleigh-Ritz 
method in the following analysis. 

3. Growth of a cylindrical void with 
internal pressure induced by 
temperature rise 

A long cylindrical void (Fig. 1) stretched at a uniform 
rate g in the direction of its axis while subjected to 
internal pressure p, is considere& A remote transverse 
stress a ~  is also specified. In the view of axial 
symmetry and incompressibility, the admissible 
velocity field is 

~ = ~z (9) 

rio = 0 

3 4 8 4  

where fo is the unknown transverse velocity of the 
cavity boundary. Substituting Equation 9 into the 
functional Equation 4, one gets 

Q(u) = [Sij(~ ) -- s~j]~ij2rcrdr 
o 

where 

- (c~ + p)fo2~ro (10) 

s,j(~) = ~OOgU/(gUgk~) 1/2 (11) 

in the case of a non-hardening Mises material with 
yield stress %(T) in shear, where Zo generally is the 
function of temperature T. 

Since the actual velocity field has the form of 
Equation 9, we get the exact answer by minimizing 
Q with respect to f0, which leads to 

ro 3 t/2 I ~  + p(T, Vr)I 1 
r0 2 I~[sinh - ~  (12) "co(T) 

where Vr is the cavity volume and can be expressed in 
term of ro(t) 

V~ = ~rg(t)L (13) 

and L is the length of the void. Based on Equations 
2 and 13, Equation 12 then reads 

io 31/2 [ ~ TR2po ] 1 
ro - 2 -1~ls inh  + - -  - ~(14) 

L'co(T) Tor~zo(T)J 

where Ro is the initial radius of void, i.e. Ro = ro(O) 
and Po is the initial pressure. 

4. Growth of a spherical void via 
temperature rise 

Consider a single spherical void subjected to internal 
pressure in a general remote strain rate field ~i~, with 
the remote normal stress ~o being specified (see 
Fig. 2). According to Rice and Tracey [5J, any 
assumed velocity fields can be expressed as 

fii = ~i~xj + Dfii D + Efi~ (15) 

where the first term on the right-hand side relates to 
a velocity in a uniform strain rate field + ~, and D and 
E are assumed to be determined, fi~ is a spherically 
symmetric volume changing field, and ~f is a shape 
changing field which preserves void volume. 
Incompressibility and spherical symmetry require that 
the volume changing field be 

~li D = E i j ~ i j )  X i (16) 

It has been found that for a tensile remote field the 
spherically symmetric volume changing part of the 
void growth far overwhelms the shape changing part 
when the remote mean stress is large. It is possible to 
choose an assumed velocity field involving only the 
contribution from the remote strain field and 
a spherically symmetric void expression field, i.e. 

/~i = ~/c~Xj JI- Dvi~ (17) 
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Figure 2 A spherical void with internal pressure. 

X 2 

By substituting Equation 17 into Equation 4 and 
minimizing the functional Q, we get 

fs  [&riD)-  s ~ ] i ~ d V  = (~ ~ § 
v v 

niujdS 

(18) 

nonhardening Mises material, the where for a 
deviatoric stresses corresponding to the assumed field 
are given by Equation 11 as 

x ~ 0 ( ~ : ~  + D~/~) 
. . . .  2. D. D 1/2 (19) sij(D) = (aij eij -]- 2D~os D + D I~.ijaij ) 

Following the similar analysis to [5], after 
complicated but straightforward calculations, finally 
one gets 

l~O(2~ij~ij)--l/2 = C(v)exp [ ~ (  o ' :  TR2po .~ 
ro \zotr) + Torg'cotr)]J 

(20) 
where C(v) is the constant dependent on the strain rate 
component,  and can be approximately expressed as 

C(v) = 0.279 + O.O04v (21) 

where 
- 3 & F /  

v - (22) 

For  a simple tension remote field, C ( v ) =  0.283, 
which will be used in following analysis. 

5. Results and discussions 
General ly,  i t  should be noted that, f rom Equat ions ]3 
and 20, the void growth w i l l  be dependent on the 
history of the temperature rise, since the temperature 
should be regarded as the function of time t. For  
simplicity, here we first examine the initial void 
growth rate io/ro(2/3~u~u) -~/2 via temperature rise, 
in different applied mean stress levels, as plotted in 
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Figure 3 The initial cylindrical void growth rate /o/r0e via 
temperature rise. - . . -  c~r~/% = 3; .-  C~r~/% = 2; -- C~/T0 = 1; 
- -  ~ r~ / TO = O. 
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Figure4 The initial spherical void growth rate /o/roe via 
temperature rise. - c~/~o = 3;- . -  cr~/zo = 2; - -  ~2/Zo = 1; 
- -  ~ 2 / %  = 0 .  

Fig. 3 for a cylindrical void and in Fig. 4 for a spherical 
void. In both cases, the initial dimensionless pressure 
Po/'Co is taken as 0.1 where 'Co is assumed to be 
constant. It  can be seen that the initial void growth 
rate increases with the temperature increases. It is 
interesting to note that the variation of 
~o/ro(2/3~u~u)-1/2 with temperature is almost linear 
both for cylindrical and spherical voids, in a wide 
range of applied mean stresses. 

Figs 5 and 6 give the results of the variation of the 
dimensionless void radii ro/Ro as a function of the 
change of remote strain Aa, at different temperatures, 
for a cylindrical void and spherical void respectively. 
The results with solid lines correspond to the 
temperature effect and are not taken into account. It 
can be found that the temperature rise has great 
influences on the void enlargement. Because in reality 
the yield stress will generally decrease with the 
temperature increase, the results presented here 
assuming 'Co to be constant, are more conservative. 

For  a running crack problem, the temperature rise 
at the crack tip is induced by the plastic dissipation. 
According to the Fourier heat conduction law, the 
governing equation for temperature rise is 

a T  
a~- - V2T - ~uau = 0 (23) 

3485 



4 

Figure 5 ro/Ro as 
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the function of &~ (for cylindrical void). 
T / T o = 3 ;  - - -  T / T o =  2; - - T / T  o =  l; 

The temperature rise as a function of t can be solved 
from the above equation once the plastic deformation 
field is known, and then, combined with Equations 14 
or 20, the void behaviour can be totally determined. 
Moreover, in view of the effects of the interaction 
along the voids, it might be possible to extend 
Gurson's model [6] for such problems, and obtain the 
related yield criteria and constitutive equation, in 
which the temperature effect is considered. This work 
will be continued further. 
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Figure 6 ro/Ro as the function of A~ (for spherical void). 
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